## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Diethyl 2,6-bis(4-ethynylphenyl)-4,8dioxoperhydro-2,3a,4a,6,7a,8a-hexaazacyclopenta[def]fluorene-8b,8cdicarboxylate

#### Sheng-Li Hu,\*‡ Shuai Wang and Liping Cao

Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: hushengli168@126.com

Received 24 October 2007; accepted 30 October 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.053; wR factor = 0.147; data-to-parameter ratio = 13.3.

The molecule of the title compound,  $C_{30}H_{28}N_6O_6$ , a glycoluril derivative, lies on a twofold rotation axis with two ethyl acetate groups bonded to the convex face of the glycoluril system. The dihedral angle between the imidazolone rings is 73.12 (3)°. Two symmetry-equivalent six-membered triazine rings are fused to the glycouril unit to form rigid side walls of a molecular clip. The crystal structure is stabilized by weak intermolecular C-H···O hydrogen bonds. The ethyl ester group is disordered over two sites of occupancy 0.539 (7) and 0.461 (7).

#### **Related literature**

For related literature, see: Yin et al. (2006); Rebek (2005); Rowan et al. (1999); Witt et al. (2000).



#### **Experimental**

#### Crystal data

C30H28N6O6 V = 2803.1 (3) Å<sup>3</sup>  $M_r = 568.58$ Z = 4Monoclinic, C2/c Mo  $K\alpha$  radiation a = 16.0226 (10) Å $\mu = 0.10 \text{ mm}^{-1}$ T = 294 (2) K b = 14.0617 (9) Å c = 13.7870 (9) Å  $0.30 \times 0.20 \times 0.04 \text{ mm}$  $\beta = 115.523 (1)^{\circ}$ 

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 12898 measured reflections

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.053$ | 11 restraints                                             |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.147$               | H-atom parameters constrained                             |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$ |
| 3057 reflections                | $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$  |
| 229 parameters                  |                                                           |

3057 independent reflections

 $R_{\rm int} = 0.055$ 

1952 reflections with  $I > 2\sigma(I)$ 

#### Table 1 H

| ydrogen-bond | geometry | (A, ' | ). |  |
|--------------|----------|-------|----|--|
|              |          |       |    |  |

 $D - H \cdot \cdot \cdot A$ D-H $H \cdots A$  $D \cdot \cdot \cdot A$  $D - H \cdot \cdot \cdot A$  $C1 - H1 \cdots O3^i$ 0.93 2.35 3.226 (7) 158

Symmetry code: (i)  $-x, y + 1, -z + \frac{1}{2}$ .

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

We are grateful to the Central China Normal University for financial support and to Professor Wu An-Xin for helpful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2535).

#### References

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.

Rebek, J. Jr (2005). Angew. Chem. Int. Ed. 44, 2068-2078.

- Rowan, A. E., Elemans, J. A. A. W. & Notle, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Witt, D., Lagona, J., Damkaci, F., Fettinger, J. C. & Isaacs, L. (2000). Org. Lett. 2, 755-758.
- Yin, G., Wang, Z., Chen, Y., Wu, A. & Pan, Y. (2006). Synlett, pp. 49-52.

‡ Also at Hubei Key Laboratory of Bioanalytical Techniques, Hubei Normal University, Huangshi 435002, People's Republic of China.

Acta Cryst. (2007). E63, o4542 [doi:10.1107/S160053680705458X]

### Diethyl 2,6-bis(4-ethynylphenyl)-4,8-dioxoperhydro-2,3a,4a,6,7a,8a-hexaazacyclopenta[*def*]fluorene-8b,8c-dicarboxylate

### S.-L. Hu, S. Wang and L. Cao

#### Comment

Glycoluryl derivatives have been employed in many applications, including polymer cross-linking, explosives, stabilization of organic compounds against photo-degradation, textile waste, stream purfication, and comblinational chemistry (Witt *et al.*, 2000). They are also used as building blocks for self assembly, molecular recognition, and catalysis (Rebek, 2005; Rowan *et al.*, 1999). In this paper we report the crystal structure of the title glycoluryl derivative, (I)(Fig. 1), in which the dihedral angle between the imidazolone rings of the glycouril unit is 73.12 (3) ° and the dihedral angle between two phenyl ring is 16.82 (4)°. The molecule lies on a crystallographic twofold axis. In the crystal structure, molecules are connected by wek intermolecular C—H···O hydrogen bonds (Fig. 2).

#### **Experimental**

The title compound was synthesized in analogy to the literature procedure of Yin *et al.* (2006), Crystals appropriate for data collection were obtained by slow evaporation from a methanol-chloroform solution (1:20 V/V) of (I).

#### Refinement

The H atoms were constrained to an ideal geometry and constrained to ride on their parent atoms as follows: methylene H with d(C-H)=0.97 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ ; methine H with d(C-H)=0.98 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ ; aromatic H with d(C-H)=0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ . The unique ethyl acetate group is disorder over two sites; the site-occupancy factors for the two orientations were refined using the *DFIX* instruction in *SHELXTL* (Sheldrick, 2000) giving 0.539 (7) and 0.461 (7) for the major and minor components, respectively.

### Figures



Fig. 1. The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms atoms shown as circles of arbitrary radii.

Fig. 2. The molecular packing of viewed along the b axis. Hydrogen bonds are shown as dashed lines

# Diethyl 2,6-bis(4-ethynylphenyl)-4,8-dioxoperhydro- 2,3a,4a,6,7a,8a-hexaaza-cyclopenta[def]fluorene-8 b,8c-dicarboxylate

| Crystal data                    |                                              |
|---------------------------------|----------------------------------------------|
| $C_{30}H_{28}N_6O_6$            | $F_{000} = 1192$                             |
| $M_r = 568.58$                  | $D_{\rm x} = 1.347 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, C2/c                | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -C 2yc             | Cell parameters from 3199 reflections        |
| a = 16.0226 (10)  Å             | $\theta = 2.2 - 22.7^{\circ}$                |
| <i>b</i> = 14.0617 (9) Å        | $\mu = 0.10 \text{ mm}^{-1}$                 |
| c = 13.7870 (9)  Å              | T = 294 (2) K                                |
| $\beta = 115.523 \ (1)^{\circ}$ | Plate, colorless                             |
| V = 2803.1 (3) Å <sup>3</sup>   | $0.30\times0.20\times0.04~mm$                |
| Z = 4                           |                                              |
|                                 |                                              |

### Data collection

| Bruker SMART CCD area-detector<br>diffractometer | 1952 reflections with $I > 2\sigma(I)$ |
|--------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube         | $R_{\rm int} = 0.055$                  |
| Monochromator: graphite                          | $\theta_{\text{max}} = 27.0^{\circ}$   |
| T = 294(2)  K                                    | $\theta_{\min} = 2.0^{\circ}$          |
| /f and /w scans                                  | $h = -20 \rightarrow 20$               |
| Absorption correction: none                      | $k = -17 \rightarrow 17$               |
| 12898 measured reflections                       | $l = -16 \rightarrow 17$               |
|                                                  |                                        |

#### 3057 independent reflections

#### Refinement

| Refinement on $F^2$                                         | Secondary atom site location: difference Fourier map                      |
|-------------------------------------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full                                  | Hydrogen site location: inferred from neighbouring sites                  |
| $R[F^2 > 2\sigma(F^2)] = 0.053$                             | H-atom parameters constrained                                             |
| $wR(F^2) = 0.147$                                           | $w = 1/[\sigma^2(F_o^2) + (0.0768P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.05                                             | $(\Delta/\sigma)_{\text{max}} = 0.001$                                    |
| 3057 reflections                                            | $\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$                     |
| 229 parameters                                              | $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$                |
| 11 restraints                                               | Extinction correction: none                                               |
| Deine and stand site 1 and in a stand time in a site diaset |                                                                           |

Primary atom site location: structure-invariant direct methods

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-------------------------------|-----------|
| C1  | 0.1661 (2)   | 1.5590 (2)   | 0.3141 (2)   | 0.1019 (9)                    |           |
| H1  | 0.1691       | 1.6246       | 0.3076       | 0.122*                        |           |
| C2  | 0.16248 (15) | 1.47641 (18) | 0.32223 (18) | 0.0773 (6)                    |           |
| C3  | 0.16116 (13) | 1.37528 (14) | 0.33657 (15) | 0.0638 (5)                    |           |
| C4  | 0.22584 (14) | 1.31674 (15) | 0.32419 (17) | 0.0687 (6)                    |           |
| H4  | 0.2685       | 1.3429       | 0.3027       | 0.082*                        |           |
| C5  | 0.22749 (13) | 1.22119 (14) | 0.34323 (17) | 0.0668 (5)                    |           |
| H5  | 0.2722       | 1.1837       | 0.3357       | 0.080*                        |           |
| C6  | 0.16372 (12) | 1.17853 (13) | 0.37371 (14) | 0.0581 (5)                    |           |
| C7  | 0.09803 (13) | 1.23665 (15) | 0.38301 (17) | 0.0692 (6)                    |           |
| H7  | 0.0535       | 1.2102       | 0.4013       | 0.083*                        |           |
| C8  | 0.09754 (14) | 1.33303 (16) | 0.36569 (18) | 0.0715 (6)                    |           |
| H8  | 0.0532       | 1.3707       | 0.3738       | 0.086*                        |           |
| C9  | 0.19180 (13) | 1.01352 (14) | 0.33255 (17) | 0.0676 (5)                    |           |
| H9A | 0.2329       | 0.9646       | 0.3778       | 0.081*                        |           |
| H9B | 0.2233       | 1.0459       | 0.2958       | 0.081*                        |           |

| C10  | 0.05180 (13)  | 1.02199 (11) | 0.16204 (14) | 0.0521 (4)  |           |
|------|---------------|--------------|--------------|-------------|-----------|
| C11  | -0.11956 (15) | 1.03730 (15) | 0.04899 (15) | 0.0683 (6)  |           |
| H11A | -0.1018       | 1.0856       | 0.0112       | 0.082*      |           |
| H11B | -0.1581       | 0.9911       | -0.0034      | 0.082*      |           |
| C12  | -0.04897 (13) | 0.92670 (11) | 0.20293 (14) | 0.0525 (4)  |           |
| C13  | -0.08516 (16) | 0.82917 (14) | 0.15162 (19) | 0.0730 (6)  |           |
| N1   | 0.17227 (11)  | 1.08128 (11) | 0.39963 (13) | 0.0654 (5)  |           |
| N2   | 0.10735 (10)  | 0.96859 (9)  | 0.25254 (12) | 0.0535 (4)  |           |
| N3   | -0.03683 (10) | 0.99023 (9)  | 0.12713 (11) | 0.0528 (4)  |           |
| 01   | 0.07893 (9)   | 1.08330 (8)  | 0.12080 (11) | 0.0660 (4)  |           |
| C14  | -0.0932 (6)   | 0.7206 (4)   | 0.0159 (6)   | 0.101 (2)   | 0.539 (7) |
| H14A | -0.1119       | 0.7359       | -0.0592      | 0.121*      | 0.539 (7) |
| H14B | -0.1472       | 0.6988       | 0.0242       | 0.121*      | 0.539 (7) |
| C15  | -0.0228 (4)   | 0.6458 (4)   | 0.0495 (6)   | 0.118 (3)   | 0.539(7)  |
| H15A | 0.0320        | 0.6694       | 0.0460       | 0.176*      | 0.539 (7) |
| H15B | -0.0459       | 0.5920       | 0.0027       | 0.176*      | 0.539 (7) |
| H15C | -0.0085       | 0.6271       | 0.1219       | 0.176*      | 0.539 (7) |
| 02   | -0.0548 (5)   | 0.8049 (4)   | 0.0821 (6)   | 0.107 (3)   | 0.539 (7) |
| O3   | -0.1358 (6)   | 0.7852 (5)   | 0.1785 (7)   | 0.097 (2)   | 0.539 (7) |
| C14' | -0.0331 (5)   | 0.6950 (4)   | 0.0815 (5)   | 0.0825 (19) | 0.461 (7) |
| H14C | 0.0255        | 0.6739       | 0.0841       | 0.099*      | 0.461 (7) |
| H14D | -0.0503       | 0.6516       | 0.1245       | 0.099*      | 0.461 (7) |
| C15' | -0.1034 (6)   | 0.6932 (6)   | -0.0291 (5)  | 0.097 (3)   | 0.461 (7) |
| H15D | -0.1621       | 0.7105       | -0.0312      | 0.145*      | 0.461 (7) |
| H15E | -0.1073       | 0.6304       | -0.0580      | 0.145*      | 0.461 (7) |
| H15F | -0.0873       | 0.7376       | -0.0712      | 0.145*      | 0.461 (7) |
| O2'  | -0.0227 (4)   | 0.7905 (4)   | 0.1261 (6)   | 0.084 (2)   | 0.461 (7) |
| O3'  | -0.1586 (6)   | 0.7929 (7)   | 0.1352 (9)   | 0.109 (4)   | 0.461 (7) |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C1  | 0.127 (2)   | 0.0702 (16) | 0.137 (2)   | 0.0139 (15)  | 0.085 (2)   | 0.0180 (16)  |
| C2  | 0.0842 (14) | 0.0712 (16) | 0.0856 (16) | 0.0025 (12)  | 0.0453 (13) | 0.0057 (12)  |
| C3  | 0.0683 (12) | 0.0612 (12) | 0.0584 (12) | -0.0044 (9)  | 0.0239 (10) | 0.0000 (10)  |
| C4  | 0.0735 (12) | 0.0670 (13) | 0.0736 (14) | -0.0136 (10) | 0.0392 (11) | -0.0070 (10) |
| C5  | 0.0659 (11) | 0.0654 (13) | 0.0750 (14) | -0.0075 (10) | 0.0360 (11) | -0.0087 (10) |
| C6  | 0.0621 (11) | 0.0605 (12) | 0.0471 (11) | -0.0111 (9)  | 0.0192 (9)  | -0.0062 (9)  |
| C7  | 0.0709 (12) | 0.0709 (14) | 0.0740 (14) | -0.0071 (10) | 0.0390 (11) | -0.0002 (11) |
| C8  | 0.0704 (12) | 0.0725 (14) | 0.0779 (14) | 0.0019 (10)  | 0.0380 (12) | -0.0010 (11) |
| C9  | 0.0668 (12) | 0.0601 (12) | 0.0805 (14) | 0.0043 (9)   | 0.0362 (11) | 0.0062 (11)  |
| C10 | 0.0793 (12) | 0.0375 (9)  | 0.0562 (11) | 0.0047 (8)   | 0.0449 (10) | -0.0012 (8)  |
| C11 | 0.0872 (14) | 0.0668 (13) | 0.0500 (11) | 0.0066 (10)  | 0.0287 (11) | -0.0030 (9)  |
| C12 | 0.0731 (10) | 0.0372 (9)  | 0.0579 (11) | -0.0034 (8)  | 0.0385 (9)  | -0.0049 (7)  |
| C13 | 0.1027 (17) | 0.0463 (11) | 0.0882 (16) | -0.0129 (11) | 0.0583 (15) | -0.0129 (11) |
| N1  | 0.0766 (10) | 0.0620 (10) | 0.0602 (10) | -0.0104 (8)  | 0.0319 (9)  | -0.0036 (8)  |
| N2  | 0.0677 (9)  | 0.0414 (8)  | 0.0615 (10) | 0.0025 (7)   | 0.0375 (8)  | 0.0033 (7)   |
| N3  | 0.0726 (10) | 0.0453 (8)  | 0.0467 (8)  | 0.0002 (7)   | 0.0315 (8)  | -0.0002 (6)  |

| 01                  | 0.0950 (10)   | 0.0526 (8)  | 0.0732 (9) | 0.0010 (6)            | 0.0577 (8) | 0.0087 (6)  |
|---------------------|---------------|-------------|------------|-----------------------|------------|-------------|
| C14                 | 0.153 (7)     | 0.064 (4)   | 0.090 (6)  | -0.026 (4)            | 0.057 (6)  | -0.038 (4)  |
| C15                 | 0.140 (5)     | 0.085 (4)   | 0.148 (6)  | -0.007 (4)            | 0.081 (5)  | -0.030 (4)  |
| O2                  | 0.190 (6)     | 0.073 (3)   | 0.103 (5)  | -0.056 (4)            | 0.106 (5)  | -0.048 (3)  |
| O3                  | 0.163 (5)     | 0.051 (2)   | 0.115 (6)  | -0.044 (2)            | 0.096 (4)  | -0.038 (3)  |
| C14'                | 0.111 (5)     | 0.057 (4)   | 0.086 (5)  | -0.002 (4)            | 0.048 (4)  | -0.025 (3)  |
| C15'                | 0.129 (6)     | 0.078 (6)   | 0.085 (5)  | -0.032 (5)            | 0.047 (4)  | -0.023 (4)  |
| O2'                 | 0.125 (4)     | 0.055 (2)   | 0.094 (5)  | -0.006 (2)            | 0.069 (4)  | -0.030 (3)  |
| O3'                 | 0.141 (5)     | 0.101 (5)   | 0.128 (8)  | -0.063 (4)            | 0.100 (6)  | -0.057 (5)  |
| Geometric param     | neters (Å, °) |             |            |                       |            |             |
| C1—C2               |               | 1.170 (3)   | C12        | $-N2^{i}$             |            | 1.447 (2)   |
| C1—H1               |               | 0.9300      | C12        | —N3                   |            | 1.450 (2)   |
| C2—C3               |               | 1.437 (3)   | C12        | —C13                  |            | 1.538 (3)   |
| C3—C8               |               | 1 381 (3)   | C12        | $-C12^{i}$            |            | 1 547 (4)   |
| $C_3 - C_4$         |               | 1 390 (3)   | C12        | -03                   |            | 1 200 (5)   |
| C4-C5               |               | 1.350(3)    | C13        | -03'                  |            | 1.200 (5)   |
| C4—H4               |               | 0.9300      | C13        |                       |            | 1 294 (4)   |
| C5—C6               |               | 1.397 (2)   | C13        |                       |            | 1.314 (5)   |
| С5—Н5               |               | 0.9300      | N1-        |                       |            | 1.454 (2)   |
| С6—С7               |               | 1.381 (3)   | N2-        | $-C12^{i}$            |            | 1.447 (2)   |
| C6—N1               |               | 1.405 (2)   | C14        |                       |            | 1.460 (6)   |
| С7—С8               |               | 1.376 (3)   | C14        |                       |            | 1.463 (7)   |
| С7—Н7               |               | 0.9300      | C14        | —H14A                 |            | 0.9700      |
| С8—Н8               |               | 0.9300      | C14        | —H14B                 |            | 0.9700      |
| C9—N1               |               | 1.453 (2)   | C15        | —H15A                 |            | 0.9600      |
| C9—N2               |               | 1.470 (2)   | C15        | —H15B                 |            | 0.9600      |
| С9—Н9А              |               | 0.9700      | C15        | —H15C                 |            | 0.9600      |
| С9—Н9В              |               | 0.9700      | C14        | '—C15'                |            | 1.455 (7)   |
| C10-01              |               | 1.2118 (19) | C14        | '—O2'                 |            | 1.456 (6)   |
| C10—N3              |               | 1.363 (2)   | C14        | '—H14C                |            | 0.9700      |
| C10—N2              |               | 1.399 (2)   | C14        | '—H14D                |            | 0.9700      |
| C11—N1 <sup>i</sup> |               | 1.454 (2)   | C15        | '—H15D                |            | 0.9600      |
| C11—N3              |               | 1.458 (2)   | C15        | Ч—Н15Е                |            | 0.9600      |
| C11—H11A            |               | 0.9700      | C15        | 5'—H15F               |            | 0.9600      |
| C11—H11B            |               | 0.9700      |            |                       |            |             |
| C2—C1—H1            |               | 180.0       | N3-        |                       |            | 101.66 (14) |
| C1—C2—C3            |               | 177.6 (3)   | C13        | —C12—C12 <sup>i</sup> |            | 115.55 (12) |
| C8—C3—C4            |               | 117.63 (19) | O3-        | C13O2                 |            | 127.8 (4)   |
| C8—C3—C2            |               | 121.48 (18) | O3'-       | C13O2                 |            | 113.3 (5)   |
| C4—C3—C2            |               | 120.86 (17) | O3-        | C13O2'                |            | 124.3 (5)   |
| C5—C4—C3            |               | 120.80 (18) | O3'-       | C13O2'                |            | 124.5 (5)   |
| С5—С4—Н4            |               | 119.6       | O3–        | C13C12                |            | 119.3 (3)   |
| С3—С4—Н4            |               | 119.6       | O3'-       |                       |            | 127.3 (4)   |
| C4—C5—C6            |               | 121.58 (18) | O2-        | C13C12                |            | 112.9 (3)   |
| C4—C5—H5            |               | 119.2       | O2'-       |                       |            | 108.2 (3)   |

| С6—С5—Н5                                       | 119.2       |             | C6—N1—C9                |              | 120.04 (15) |
|------------------------------------------------|-------------|-------------|-------------------------|--------------|-------------|
| C7—C6—C5                                       | 117.35 (18) |             | C6—N1—C11 <sup>i</sup>  |              | 121.63 (16) |
| C7—C6—N1                                       | 123.15 (16) |             | C9—N1—C11 <sup>i</sup>  |              | 111.16 (15) |
| C5—C6—N1                                       | 119.38 (17) |             | C10—N2—C12 <sup>i</sup> |              | 108.53 (14) |
| C8—C7—C6                                       | 120.95 (17) |             | C10—N2—C9               |              | 117.71 (15) |
| С8—С7—Н7                                       | 119.5       |             | C12 <sup>i</sup> —N2—C9 |              | 114.26 (14) |
| С6—С7—Н7                                       | 119.5       |             | C10—N3—C12              |              | 112.96 (14) |
| C7—C8—C3                                       | 121.65 (19) |             | C10—N3—C11              |              | 126.10 (15) |
| С7—С8—Н8                                       | 119.2       |             | C12—N3—C11              |              | 116.78 (15) |
| С3—С8—Н8                                       | 119.2       |             | O2-C14-C15              |              | 109.0 (6)   |
| N1—C9—N2                                       | 112.24 (14) |             | O2-C14-H14A             |              | 109.9       |
| N1—C9—H9A                                      | 109.2       |             | C15-C14-H14A            |              | 109.9       |
| N2—C9—H9A                                      | 109.2       |             | O2-C14-H14B             |              | 109.9       |
| N1—C9—H9B                                      | 109.2       |             | C15-C14-H14B            |              | 109.9       |
| N2—C9—H9B                                      | 109.2       |             | H14A—C14—H14B           |              | 108.3       |
| Н9А—С9—Н9В                                     | 107.9       |             | C13—O2—C14              |              | 119.1 (5)   |
| O1—C10—N3                                      | 126.66 (17) |             | C15'—C14'—O2'           |              | 110.8 (6)   |
| O1—C10—N2                                      | 125.56 (17) |             | C15'—C14'—H14C          |              | 109.5       |
| N3—C10—N2                                      | 107.74 (14) |             | O2'—C14'—H14C           |              | 109.5       |
| N1 <sup>i</sup> —C11—N3                        | 111.55 (14) |             | C15'—C14'—H14D          |              | 109.5       |
| N1 <sup>i</sup> —C11—H11A                      | 109.3       |             | O2'—C14'—H14D           |              | 109.5       |
| N3—C11—H11A                                    | 109.3       |             | H14C—C14'—H14D          |              | 108.1       |
| N1 <sup>i</sup> —C11—H11B                      | 109.3       |             | C14'—C15'—H15D          |              | 109.5       |
| N3—C11—H11B                                    | 109.3       |             | C14'—C15'—H15E          |              | 109.5       |
| H11A—C11—H11B                                  | 108.0       |             | H15D—C15'—H15E          |              | 109.5       |
| N2 <sup>i</sup> —C12—N3                        | 111.53 (13) |             | C14'—C15'—H15F          |              | 109.5       |
| N2 <sup>i</sup> —C12—C13                       | 111.95 (14) |             | H15D—C15'—H15F          |              | 109.5       |
| N3—C12—C13                                     | 111.03 (14) |             | H15E—C15'—H15F          |              | 109.5       |
| $N2^{i}$ —C12—C12 <sup>i</sup>                 | 104.58 (15) |             | C13—O2'—C14'            |              | 122.2 (5)   |
| Symmetry codes: (i) $-x$ , $y$ , $-z+1/2$ .    |             |             |                         |              |             |
| Hydrogen-bond geometry (Å, °)                  |             |             |                         |              |             |
| D—H…A                                          |             | <i>D</i> —Н | H···A                   | $D \cdots A$ | D—H··· $A$  |
| C1—H1···O3 <sup>ii</sup>                       |             | 0.93        | 2.35                    | 3.226 (7)    | 158         |
| Symmetry codes: (ii) $-x$ , $y+1$ , $-z+1/2$ . |             |             |                         |              |             |







